

Target-Mediated Drug Disposition (TMDD) Equations and Approximations for Systems with 1:2 and 2:1 Drug-Target Binding Stoichiometry

Leonid Gibiansky, Ekaterina Gibiansky

QuantPharm LLC, North Potomac MD, USA (www.quantpharm.com)

BACKGROUND

TMDD equations were initially written and are used assuming 1:1 stoichiometry of drug-target binding even though many biological systems do not conform to this assumption. Specifically, this assumption is violated for monoclonal antibodies that have two identical binding sites. Although standard TMDD equations provide excellent fit of the observed data, it is of interest to derive correct equations and approximations that assume truebinding stoichiometry between the drug and the target.

OBJECTIVES

To derive the TMDD model and its approximations for biological systems with 2:1 and 1:2 stoichiometry of drug-target binding.

Drug has 2 binding sites Target has 1 binding site

$$\begin{split} \frac{dA_d}{dt} &= -k_\sigma A_d; & A_d(0) = D_1; \\ \frac{dC}{dt} &= \frac{In(t) + F_{SC}k_\sigma A_d + k_{tp}A_T}{V_c} - (k_{el} + k_{pl})C \\ &= 2k_{on}C \cdot R + k_{off}RC; & C(0) = D_2/V_c; \\ \frac{dA_T}{dt} &= k_{pl}C \cdot V_c - k_{tp}A_T; & A_T(0) = 0; \\ \frac{dR}{dt} &= k_{syn} - k_{deg}R - 2k_{on}C \cdot R + 2k_{off}R_2C \\ &- k_{on}RC \cdot R + k_{off}RC; & R(0) = k_{syn}/k_{deg}; \\ \frac{dRC}{dt} &= 2k_{on}C \cdot R - (k_{int} + k_{off})RC - k_{on}R \cdot RC + 2k_{off}R_2C; \\ \frac{dRC}{dt} &= 2k_{on}R \cdot RC - (k_{int} + k_{off})R_2C; & RC(0) = RC_2(0) = 0. \end{split}$$

Full model

C, R, RC, and R₂C are concentrations of free (unbound) drug, target, and drug complexes with one or two target molecules; \mathbf{k}_{st} is linear elimination rate constant,

 \mathbf{k}_{pt} and \mathbf{k}_{tp} are inter-compartment rate constants,

 \mathbf{k}_{on} , \mathbf{k}_{off} , and \mathbf{k}_{int} are binding, dissociation, and internalization (elimination of the complex) rate constants;

 k_{deg} and k_{syn} are degradation (elimination of the target) and target production rate constants;

 V_{C} is central volume; In(t) is the infusion rate; F_{SC} is absolute subcutaneous bioavailability.

$$K_D = k_{off}/k_{on}$$
; $K_{IB} = k_{int}/k_{on}$

QSS assumptions:
$$2k_{ont}C \cdot R - (k_{int} + k_{off})RC - k_{ont}R \cdot RC + 2k_{off}R_2C = 0;$$
 $k_{ont}R \cdot RC - (k_{int} + 2k_{off})R_2C = 0.$

Equivalent to:
$$2 \cdot C \cdot R = (K_D + K_{IB})RC + K_{IB}R_2C,$$

$$R \cdot RC = (2K_D + K_{IB})R_2C$$

Defining
$$C_{\text{tot}}$$
 and R_{tot} as $C_{\text{tot}} = R + RC + R_2C$ $R_{\text{tot}} = R + RC + 2R_2C$

results in:

$$C = C_{bol} \frac{(K_D + K_{lB})(K_D + K_{lB}/2) + K_{lB}R/2}{(K_D + K_{lB} + R)(K_D + K_{lB}/2 + R)};$$

$$RC = C_{bol} \frac{R(2K_D + K_{lB})}{(K_D + K_{lB} + R)(K_D + K_{lB}/2 + R)};$$

$$R_{\perp}C = C_{bol} \frac{R^2}{(K_D + K_{lB} + R)(K_D + K_{lB}/2 + R)};$$

$$R = \frac{1}{2} \left[-\left(2C_{tot} + K_D + K_{IB} - R_{tot}\right) + \sqrt{\left(2C_{tot} + K_D + K_{IB} - R_{tot}\right)^2 + 4(K_D + K_{IB})R_{tot}} \right]$$

OSS approximation

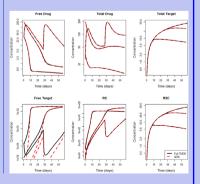
MM approximation

$$\begin{split} \frac{dA_{d}}{dt} &= -k_{o}A_{d}; \\ \frac{dC_{out}}{dt} &= \frac{In(t) + F_{sc}k_{o}A_{d} + k_{go}A_{T}}{V_{c}} - (k_{cd} + k_{ge})C \\ -k_{int}C_{tot} \frac{R \cdot (2K_{D} + K_{iB} + R)}{(K_{D} + K_{iB} + R)(K_{D} + K_{iB} + 2 + R)}; \\ \frac{dA_{T}}{dt} &= k_{go}C \cdot V_{c} - k_{go}A_{T}; \\ \frac{dA_{T}}{dt} &= k_{go}C \cdot V_{c} - k_{go}A_{T}; \\ \frac{dR_{tot}}{dt} &= k_{go}C \cdot V_{c} - k_{go}A_{T} + k_{go}A_{T}$$

Simulations: Concentration-time profiles from the full TMDD model and the corresponding QSS approximation were simulated for 3 dosing regimens: 100 mg IV, 600 mg IV, and 100 mg SC (2 doses).

CL=0.3; V_C=3; V_P=3; Q=0.2; k_a=0.5; F_{SC}=0.7; k_w=25; k_w=1; k_w=0.01; k_w=1; k_w=10.

CL=0.3; V_c =3; V_p =3; Q=0.2; k_a =0.5; F_{SC} =0.7; k_{on} =25; k_{on} =1; ; k_{im} =0.01; k_{syn} =1; k_{deg} =10. Simulations demonstrated a good agreement between exact and approximate equations, except for free target at very low concentrations. Additional investigations are planned to investigate applicability of this approximation across the range of system parameters.



METHODS/RESULTS

TMDD equations for systems with 2:1 and 1:2 drug target binding were formulated. Quasi-steady state (QSS) assumptions were applied to derive QSS approximations of these systems. QSS systems with zero internalization rate $(k_{int}=0)$ or zero dissociation rate $(k_{oft}=0)$ correspond to quasi-equilibrium (QE) or irreversible binding (IB) approximations of the TMDD equations. Michaelis-Menten (MM) approximations were derived assuming that concentrations of the drug-target complexes are much smaller than concentrations of the free drug.

CONCLUSIONS

QSS, QE, IB, and MM approximations of the TMDD models with 1:2 and 2:1 binding were derived. They can be used to provide a more detailed and precise description of the TMDD systems with 1:2 and 2:1 binding stoichiometry than those of the standard TMDD model.

Drug has 1 binding site Target has 2 binding sites

$$\begin{split} \frac{dA_{t}}{dt} &= -k_{o}A_{d}; & A_{d}(0) = D_{1}; \\ \frac{dC}{dt} &= \frac{In(t) + F_{SC}k_{o}A_{d} + k_{ty}A_{T}}{V_{c}} - (k_{ei} + k_{pr})C \\ -2k_{om}C \cdot R + k_{off}RC - k_{om}C \cdot RC + 2k_{off}RC_{2}; & C(0) = D_{2}/V_{c}; \\ \frac{dA_{T}}{dt} &= k_{pr}CV_{c} - k_{ty}A_{T}; & A_{T}(0) = 0; \\ \frac{dR}{dt} &= k_{von} - k_{deg}R - 2k_{om}C \cdot R + k_{off}RC; & R(0) = k_{tyn}/k_{deg}; \\ \frac{dRC}{dt} &= 2k_{om}C \cdot R - (k_{int} + k_{off})RC - k_{om}C \cdot RC + 2k_{off}RC_{2}; \\ \frac{dRC_{2}}{dt} &= k_{om}C \cdot RC - (k_{int} + 2k_{off})RC_{2}; & RC(0) = RC_{2}(0) = 0. \end{split}$$

Full model

 $C,\,R,\,RC,$ and RC_2 are concentrations of free (unbound) drug, target, and target complexes with one or two drug molecules;

kel is linear elimination rate constant,

 \mathbf{k}_{pt} and \mathbf{k}_{tp} are inter-compartment rate constants,

 \mathbf{k}_{on} , \mathbf{k}_{off} , and \mathbf{k}_{int} are binding, dissociation, and internalization (elimination of the complex) rate constants;

 k_{deg} and k_{syn} are degradation (elimination of the target) and target production rate constants;

 ${f V}_C$ is central volume; ${f In}(t)$ is the infusion rate; ${f F}_{SC}$ is absolute subcutaneous bioavailability.

$$\mathbf{K_D} = k_{off}/k_{on}$$
; $\mathbf{K_{IB}} = k_{int}/k_{on}$

QSS assumptions:
$$2k_{om}C \cdot R - (k_{int} + k_{off})RC - k_{on}C \cdot RC + 2k_{off}RC_z = 0,$$
 $k_{om}C \cdot RC - (k_{int} + 2k_{off})RC_z = 0.$

Equivalent to:
$$C \cdot R = (K_D + K_{IB})RC/2 + K_{IB}RC_2/2,$$
$$C \cdot RC = (2K_D + K_{IB})RC_2.$$

Defining
$$C_{tot}$$
 and R_{tot} as $R_{tot} = R + RC + RC_2$ $C_{tot} = C + RC + 2RC_2$

results in:
$$R = R_{not} \frac{(K_D + K_{JB})(K_D + K_{JB}/2) + K_{JB}C/2}{(K_D + K_{JB} + C)KD_D + K_{JB}/2 + C)};$$

$$RC = R_{not} \frac{C(2K_D + K_{JB})}{(K_D + K_{JB} + C)(K_D + K_{JB}/2 + C)};$$

$$RC_1 = R_{not} \frac{C^2}{(K_D + K_{JB} + C)(K_D + K_{JB}/2 + C)};$$

$$C = \frac{1}{2} \left[\left(C_{tot} - 2R_{tot} - K_D - K_{IB} \right) + \sqrt{\left(C_{tot} - 2R_{tot} - K_D - K_{IB} \right)^2 + 4(K_D + K_{IB})C_{tot}} \right]$$

OSS approximation

$$\begin{split} \frac{dA_{sf}}{dt} &= -k_{si}A_{sf}; \\ \frac{dC_{sof}}{dt} &= \frac{Im(t) + F_{sc}k_{si}A_{sf} + k_{yi}A_{T}}{V_{c}} - (k_{si} + k_{ps})C - k_{tot} \frac{2R_{sof}C}{K_{D} + K_{fb} + C}; \\ \frac{dA_{T}}{dt} &= k_{ps}C \cdot V_{c} - k_{ys}A_{T}; \\ \frac{dR_{sof}}{dt} &= k_{syn} - k_{deg}R_{sof} - (k_{tot} - k_{deg}) \cdot R_{tof} \cdot \frac{C \cdot (2K_{D} + K_{fb} + C)}{(K_{D} + K_{fb} + C)(K_{D} + K_{fb} / 2 + C)} \\ A_{sf}(0) &= D_{1}; \quad C(0) &= D_{2}/V_{c}; \quad A_{T}(0) &= 0; \quad R_{tof}(0) = k_{syn}/k_{deg}. \end{split}$$

MM approximation is obvious, $C_{tot} = C$, and not shown

Simulations: Concentration-time profiles from the full TMDD model and the corresponding QSS approximation were simulated for 3 dosing regimens: 100 mg IV, 600 mg IV, and 100 mg SC (2 doses). $CL=0.3; V_{c}=3; V_{p}=3; Q=0.2; k_{a}=0.5; F_{sC}=0.7; k_{on}=25; k_{off}=1; k_{in}=0.01, k_{syn}=1; k_{deg}=10.$ Simulations demonstrated a good agreement between exact and approximate equations, with some deviations at low concentrations. Additional investigations are planned to investigate applicability of this approximation across the range of system parameters.

