Population Pharmacokinetics of Obinutuzumab (GA101) in Patients with Chronic Lymphocytic Leukemia (CLL) and Non-Hodgkin's Lymphoma (NHL)

Ekaterina Gibiansky¹, Leonid Gibiansky¹, David Carlile², Candice Jamois³, Vincent Buchheit³, Nicolas Frey³ ¹QuantPharm LLC, USA; ²Roche Innovation Center Welwyn, UK; ³Roche Innovation Center Basel, Switzerland

Objectives: Obinutuzumab is a novel, humanized type II anti-CD20 monoclonal antibody (mAb) with a glycoengineered Fc region. The analysis aimed to establish a predictive population model that describes PK of GA101 following IV administration and to identify covariate factors that influence its disposition.

Methods: Serum concentrations (12,634) of 678 patients (50.4% with CLL) from 4 Phase I - III studies were analyzed in NONMEM. The full model approach was used for covariate model development.

Results: Consistent with other mAbs targeting B-cells, the two-compartment population PK model with time-dependent clearance (CL=CL_{inf}+CL_T.exp(-k_{des}t)) described GA101 concentrations. Parameters were estimated precisely (Table 1), and predictive check procedures indicated good predictive abilities of the model. CL_T was 2.8-fold higher than CL_{inf}. Both values depended on diagnosis. They were 17% lower for B-cell lymphomas and diffuse large B-cell lymphomas, and 75% higher for Mantle cell lymphomas compared to CLL. For patients with CLL and baseline tumor size (BSIZ) > 1750 mm², decline of time-dependent clearance (t_{1/2} = 19 days) led to steady-state after approximately 4 months for 1000 mg q4w dosing (with 2 additional doses at weeks 1 and 2 of cycle 1). Clearance declined faster (higher k_{des}) for patients with NHL (by 108%) and patients with BSIZ< 1750 mm² (by 165%). The results are consistent with target-mediated CL (with higher CL for higher tumor burden and higher CD20 expression) that decreases with elimination of target cells.

The parameters at steady-state were typical for mAbs. CL_{inf} , CL_{T} , and Vc were higher in males and increased with body weight, but differences in steady-state exposure based on weight and gender were <30%.

GA101 PK was independent of age, renal function or anti-drug antibodies (detected in 17 subjects).

Conclusions: In CLL patients, the expected differences in steady-state exposure based on weight and gender do not warrant a dose modification for the proposed 1000 mg IV q4w dosing regimen.

Parameter	Estimate	%RSE	Parameter	Estimate	%RSE
k_{des} (1/day)	0.0359	10.8	CL _{T,DIS23} =CL _{inf,DIS23}	0.834	3.54
$CL_T (L/day)$	0.231	8.43	$CL_{T,DIS4} = CL_{inf,DIS4}$	1.75	17
CL _{inf} (L/day)	0.0828	3.37	k _{des,BSIZ<1750}	2.65	11.9
$V_{C}(L)$	2.76	1.38	ω^2_{kdes}	CV=127%	7.95 ^b
$V_{P}^{a}(L)$	1.01	4.47	ω^2_{CLT}	CV=95.3%	11.1 ^b
Q (L/day)	1.29	11.5	ω^2_{CLinf}	CV=39.9%	7.12 ^b
$CL_{inf,WT} = CL_{T,WT}$	0.615	14.8	ω^2_{Vc}	CV=18.5%	9.03 ^b
V _{C,WT}	0.383	12.1	ω^2_{Vp}	CV=60.1%	10.6 ^b
CL _{T,SEX}	1.49	9.7	ω^2_{Q}	CV=94.3%	17.5 ^b
CL _{inf,SEX}	1.22	3.6	ω^2_{EPS}	CV=52.3%	10 ^b
V _{C,SEX}	1.18	1.83	$\sigma^2_{\text{proportional}}$	CV=17.8%	4.52 ^b
k _{des,NHL}	2.08	12.3	$\sigma^2_{additive} (\mu g/mL)^2$	SD=0.165	69.1 ^b
^a Parameters O and V _z were scaled as $(BW/75)^{3/4}$ and $(BW/75)$ respectively.					

Table 1. Parameter Estimates of the Final Model

^a Parameters Q and V_P were scaled as $(BW/75)^{3/4}$ and (BW/75), respectively.

^b Relative Standard Error (%RSE) for the estimate of variance

 $CL_{inf_{s}}$ non-specific time-independent clearance; CL_{T} , initial value of time-dependent clearance; k_{des} , decay coefficient of time-dependent clearance; ω^2_{EPS} , variance of inter-individual error on proportional residual error. P_{COV} , effect of covariate COV on parameter P, where DIS23 is B-cell lymphoma and diffuse large B-cell lymphoma; DIS4 is mantle cell lymphoma; WT is weight; SEX is sex; BSIZ is the baseline tumor size (mm²).