Population Pharmacokinetics of Siplizumab (MEDI-507) **Implications for Dosing**

E. Gibiansky, PhD¹; J. Janik, MD²; D. Mahony, MD²; K. Kaucic, MD¹; L. Hammershaimb, MD¹; G. Robbie, PhD¹

¹ MedImmune, Inc., Gaithersburg, MD, USA; ² Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

Abstract

Objectives: Siplizumab (MEDI-507), a humanized IgG1k class monoclonal antibody, which targets CD2 expressing T- and NK-cells, is being evaluated in an ongoing open-label phase I dose-escalation trial in patients with CD2-positive lymphoproliferative diseases. The aim of this report is to describe a population pharmacokinetic model of siplizumab and simulations of alternative doses/regimens performed for optimization of dosing

Methods: 490 serum siplizumab samples were collected from 25 patients who received 0.4-4.8 mg/kg of siplizumab as 1-3 consecutive daily doses every 14 days for 1-8 cycles. The population pharmacokinetic analysis was performed using NONMEM. Linear and nonlinear 1- and 2-compartment models were evaluated. Simulations were performed to identify doses and dosing regimens that would maintain drug concentrations above target levels necessary for saturation of CD2 receptors.

Results: Siplizumab pharmacokinetics was described by a 1-compartment model with 2 parallel mechanisms of clearance, linear and Michaelis-Menton (MM) elimination. The half-life of the linear portion of elimination (presumably, FcRn mediated) was 31 days, consistent with expectations, while MM elimination (target-mediated clearance) had a short half-life (38 hours at concentrations below K_m of 15 µg/mL) suggesting suboptimal target saturation. Pharmacokinetics did not change over time, which was expected, since no immunogenicity was observed. Simulations of various dosing regimens suggested that doses >4.8 mg/kg weekly are necessary to maintain drug concentrations above target level (2 \times K_m, 30 μ g/mL, the level at which half-life of target-mediated clearance increases 3 times) for 90% of patients.

Conclusions: Siplizumab concentrations follow 1-compartment kinetics with linear FcRn-mediated and nonlinear targetmediated clearance. The short half-life of target-mediated clearance suggests that tissue target saturation is suboptimal at doses/regimens studied thus far. Dose escalation was accelerated based on simulations, with weekly doses ≥4.8 mg/kg, to maintain concentrations above the target level and to possibly increase target saturation in the tissues.

Background

- Siplizumab is a humanized IgG1k class anti-CD2 monoclonal antibody.
- Binds to CD2 on human T-lymphocytes (T-cells), natural killer (NK) cells, and thymocytes.
- Mechanism of action via targeted T-cell toxicity.¹
- CD2 binding region derived from rat monoclonal antibody.²
- Fc region is entirely of human origin (FcRn).
- Linear and nonlinear elimination expected for siplizumab.
- FcRn mechanism (half-life [t₁₆] ~26 days) · Target-mediated elimination
- · Linear at low drug concentrations
- · Saturable at high drug concentrations
- Dongoing (as of December 2006) phase 1 trial demonstrated activity (27% RR) and safety (no maximum tolerated dose reached).
- No dose response

Methods

Study

Phase 1, open-label, dose-escalation study in patients with CD2-positive relapsed/refractory T-cell NHL (ATL, LGL, PTCL, CTCL).

Dosing

- Cohorts 1-7: 0.4, 0.6, 0.8, 1.2, 2.4, 3.4, and 4.8 mg/kg Q14Days, total dose administered over 2-3 days (~2-h infusions).
- Cohorts 8-9: 0.8 or 3.4 mg/kg once weekly, dose over single day (no pharmacokinetic (PK) data for 3.4 mg/kg dose).

Treatment

T-Cell Depletion Data

- Data too sparse for pharmacokinetic/pharmacokinetic (PK/PD) modeling.
- · Efficient depetion of CD4+ and CD8+ T cells in peripheral blood at all doses
- · All PD measurements collected at peak effect
- · No PD measurements at trough or between doses

Results

Pharmacokinetics

- Done-compartment population PK model.
- Two mechanisms of elimination
- Linear (presumably FcRn)
- Nonlinear (CD2-mediated)

	,	Parameter	Est Value	90% CI	Variability % CV
V _d		V _d (L/77 kg)	4.7	4.2-5.3	25
		K (L/d)	0.022	0.006-0.07	
		$K_m (\mu g/mL)$	15	10-37	84
V _m /K _m	K	$V_m (\mu g/mL/d)$	6.6	4.7-10	
+Conc/K					

- FcRn elimination
- t 31 days
- "Target-mediated" elimination
- t_a **38 hours** (very short!!) at concentrations below K_m (<15 µg/mL)
- Saturation of elimination at concentrations above K_m.

IMPLICATIONS FOR DOSING

- "Target-mediated" elimination is governed by
- · Availability and affinity to target
- Distribution of drug to target outside blood
- According to T-cell depletion data drug rapidly kills cells in blood
- Continued rapid elimination in the absence of target cells in blood suggests
- · presence of target cells in tissues
- · distribution/elimination of drug outside of blood
- **D** IMPLICATION
 - To maximize drug effect, maintain serum concentrations ALWAYS above saturation, ie, several times above 15 µg/mL.

Simulated Concentrations for Different Dosing

Regimens

WEEKLY DOSING

band of 90% confidence intervals

Dosing Recommendation

At least 4.8–9.0 mg/kg dose once a week to assure that most patients maintain high concentration levels (above 30 or 75 μg/ mL)

Conclusions

- Siplizumab follows a 1-compartment model with parallel linear and saturable elimination.
- Half-life of the saturable pathway is 38 hours at low concentrations.
- Rapid elimination in the absence of target cells in peripheral blood suggests the presence of target cells in tissues and distribution of drug to these tissues.
- Weekly dosing achieves desired concentrations at lower doses

Until progression, but no more than 16 weeks in cohorts 1-5.

Pharmacokinetic Data

- ▶ 490 serum samples from 25 patients in cohorts 1–8.
- Most patients' trough values below limit of quantitation and no accumulation.
- Only trough and peak samples for treatment cycles >1.

Pharmacokinetic Analysis

Population PK using NONMEM V.

- Dosing recommendation
 - At least 4.8 mg/kg weekly (and preferably higher), if safety allows

Later Developments

During trial continuation with intensified dosing, several cases of Epstein-Barr Virus lymphoproliferative disease occurred leading to suspension of enrollment for safety evaluation.

References

- 1. Xu Y, et al. Clin Exp Immunol. 2004;138:476-483.
- 2. de la Parra B, et al. Belg J Zool. 1991;121(suppl 1):13

Population Approach Group in Europe Sixteenth Annual Meeting June 13-15, 2007 Copenhagen, Denmark Research supported by MedImmune, Inc.