The Relationship between Target-Mediated Drug Disposition (TMDD) and Models with Time-Dependent Clearance

Leonid Gibiansky, Ekaterina Gibiansky
QuantPharm LLC, North Potomac MD, USA (www.quantpharm.com)

METHODS/RESULTS (continuation)

Substituting expressions for the concentration of target cells in the equation for A_1, one can arrive at the equation

$$\frac{dA_1}{dt} = \left(\frac{CL_{ss}}{V_c} + \frac{Q}{V_p} + \frac{A_2}{V_c} \cdot k_{int} A_i R_i \right) - k_{deg} A_i R_i \cdot A_1(0) = D_{iv};$$

Here target-mediated elimination $k_{int} A_i R_i \cdot A_1$ is proportional to the drug amount A_i, the target cell concentration R_i, and internalization rate k_{int} that may depend on drug-target binding rate k_{syn}, density and turnover of target receptors. Target cells are in equilibrium prior to drug administration; kill rate of target cells can be described by Emax function of drug concentrations $k_{int} A_i R_i / (IC_{50} + C)$.

If IC_{50} is significantly lower than trough concentration C_{min}, then one can derive equation

$$\frac{dR}{dt} = k_{syn} - (k_{deg} + k_{kill}) R_i; \quad t > 0; \quad R(0) = R_0 = k_{syn} / k_{deg}, \quad \text{that has a solution} \quad R = R_0 \left(\frac{k_{deg} + k_{kill}}{k_{deg} + k_{kill}} e^{-(k_{deg} + k_{kill}) t} \right); \quad t > 0.$$

REFERENCES

Acknowledgements

We are grateful to Dr. Donald Mager for stimulating discussions.