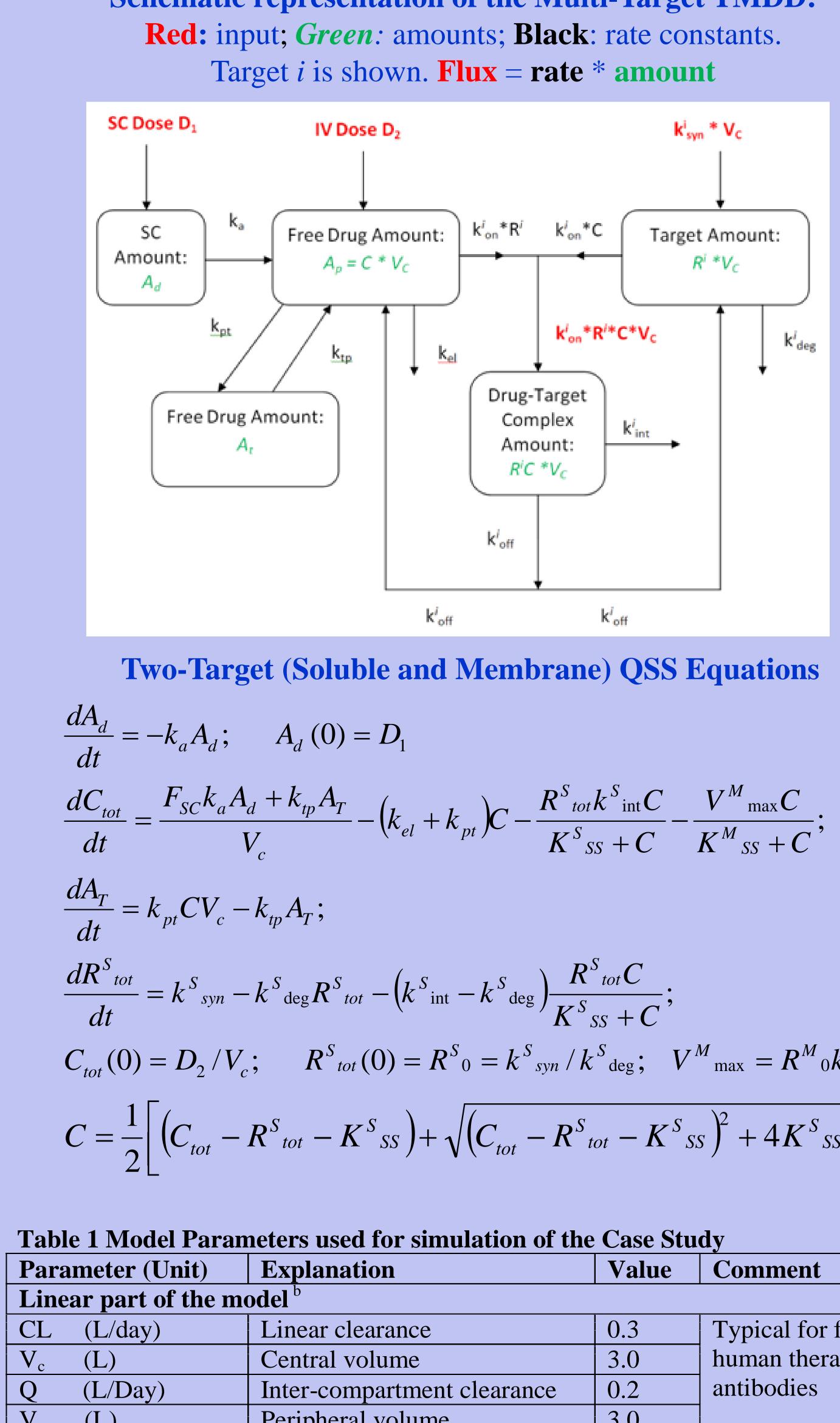
Modeling of Drugs with Soluble (S) and Membrane-Bound (M) Targets using Quasi-Steady-State (QSS) Approximation of the Target-Mediated Drug Disposition (TMDD) Model

ABSTRACT

Purpose:

To develop an approach for description of pharmacokinetics for drugs with TMDD [1] that bind to S and M targets; to demonstrate on the simulated example that models based on the QSS approximation [2, 3] can identify parameters of both targets based on the free drug and total S-target concentrations.

Methods:


The TMDD equations were extended to describe drug interactions with multiple targets. The QSS approximation of these equations was derived. A population data set (3250 unbound drug and 3305 total S-target concentrations from 224 subjects) was used to investigate identifiability of QSS model parameters. Drug and target concentrations were simulated for a monoclonal antibody that bind to S and M targets. It was assumed that the unbound drug and total S-target concentrations are observable while the M-target is not observable. The QSS approximation of the TMDD two-target model was used to fit the simulated data.

Results:

For the range of parameters typical for monoclonal antibodies with binding to S and M targets, S-target binding was described by the QSS approximation while Michaelis-Menten (MM) elimination term adequately described contribution of the M-target. Contributions of two targets could not be separated when only the drug concentration data were available. However, when S-target concentration data were also available, the model correctly estimated parameters of the drug and both targets, including the M-target production rate and percent decrease from baseline for unbound M-target concentration. The parameters were estimated precisely, with the highest bias (10-15%) and the lowest precision (RSE=10-18%) observed for the M-target parameters.

Conclusions:

The TMDD model and its approximations were derived for drugs that bind to two different targets. Simulation study for a monoclonal antibody that binds to soluble and membranebound targets demonstrated identifiability of the two-target QSS model parameters, specifically, the ability of the model to obtain precise and unbiased parameter estimates for the drug, and both soluble and membrane-bound targets. Moreover, the model correctly estimated unobservable Mtarget production rate and percent decrease from baseline of the unbound M-target concentration.

Linear part of the model ^b					
CL (L/day)	Linear clearance	0.3	Typical for fully-		
V _c (L)	Central volume	3.0	human therapeutic		
Q (L/Day)	Inter-compartment clearance	0.2	antibodies		
V _p (L)	Peripheral volume	3.0			
F _{SC}	SC bioavailability	0.7			
k_a (1/day)	SC absorption rate constant	0.5			
Parameters of the S-target					
k ^S _{on} (L/nmol/day)	Association constant	10	Within typical		
k ^S _{off} (1/day)	Dissociation constant	0.1	range		
k_{int}^{S} (1/day)	Internalization rate	0.05	Similar to k _{el}		
k ^s _{syn} (nmol/L/day)	Syntheses rate	1	Consistent with		
k_{deg}^{S} (1/day)	Degradation rate	10	literature data		
R^{S}_{0} (nmol/L)	Baseline concentration	0.1^{a}	$=k^{S}_{syn}/k^{S}_{deg}$		
K^{S}_{SS} (nmol/L)	QSS constant	0.015 ^{<i>a</i>}	$=(k^{S}_{off}+k^{S}_{int})/k^{S}_{on}$		
Parameters of the M-target					
k ^M _{on} (L/nmol/day)	Association constant	5	Within typical		
k^{M}_{off} (1/day)	Dissociation constant	0.25	range		
k^{M}_{int} (1/day)	Internalization rate	15	Similar to k _{deg}		
k ^M _{syn} (nmol/L/day)	Syntheses rate	1.5	Consistent with		
$ \mathbf{k}^{M}_{deg} $ (1/day)	Degradation rate	15	literature data		
R^{M}_{0} (nmol/L)	Baseline concentration	0.1 ^a	$-k^{M}_{syn}/k^{M}_{deg}$		
V^{M}_{max} (nmol/L/day)	Maximum elimination rate	1.5 ^{<i>a</i>}	$=k^{S}_{syn}k^{M}_{int}/k^{S}_{deg}$		
K^{M}_{SS} (nmol/L)	QSS constant	3.05 ^{<i>a</i>}	$=(k^{M}_{off}+k^{M}_{int})/k^{M}_{on}$		
^a Derived parameters;	^b Rate constants are expressed as	$k_{el} = CL/V_c$, $k_{pt} = Q/V_c$, $k_{tp} = Q/V_p$.		

Leonid Gibiansky, Ekaterina Gibiansky

QuantPharm LLC, North Potomac MD, USA (www.quantpharm.com)

Schematic representation of the Multi-Target TMDD:

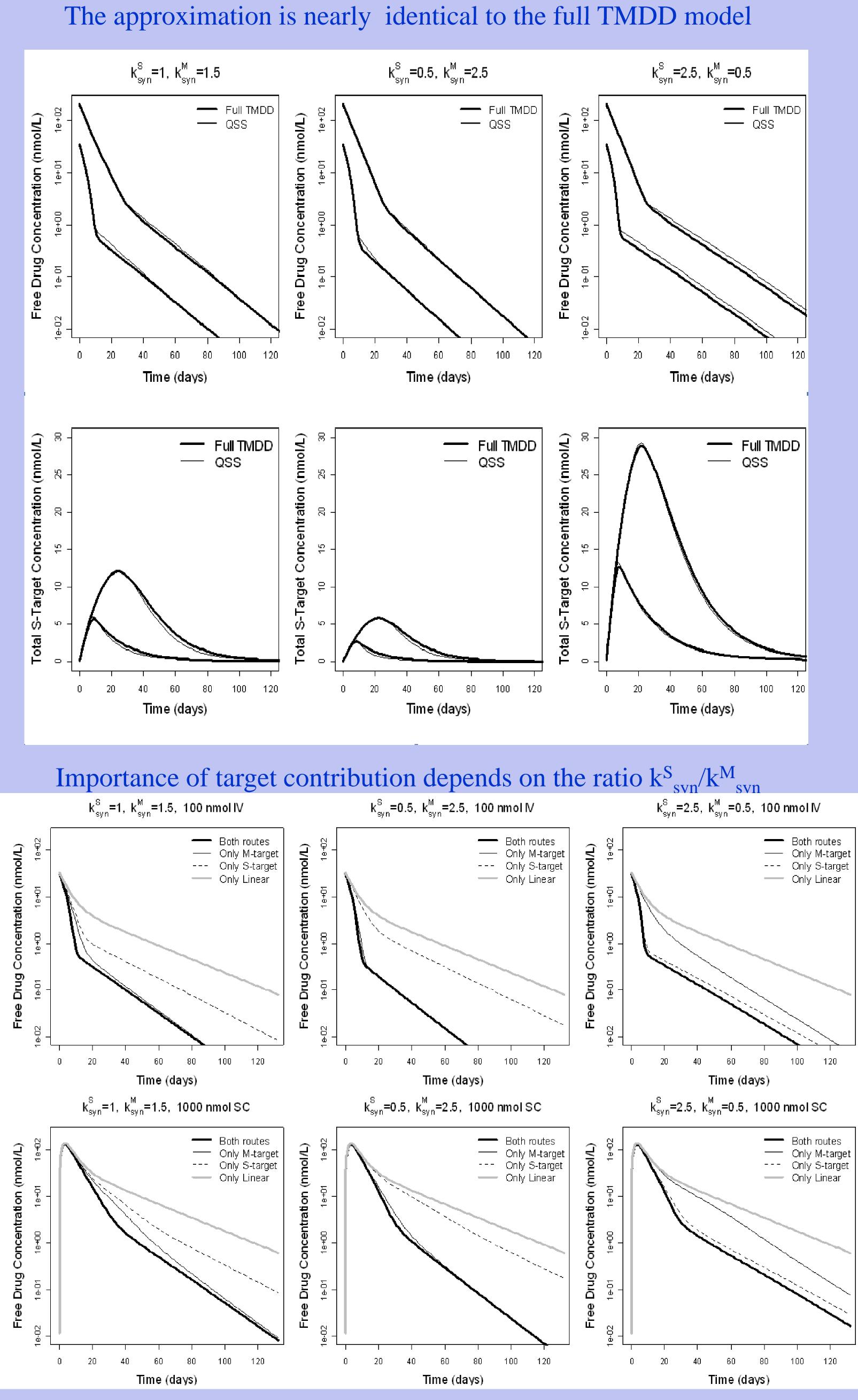
$$_{d}; \quad A_{d}(0) = D$$

$$\frac{k_a A_d + k_{tp} A_T}{V_c} - (k_{el} + k_{pt})C - \frac{R^S_{tot} k^S_{int} C}{K^S_{SS} + C} - \frac{V^M_{max} C}{K^M_{SS} + C};$$

$$V_c - k_{tp} A_T$$

$$syn - k^{S} deg R^{S}_{tot} - (k^{S}_{int} - k^{S}_{deg}) \frac{R^{S}_{tot}C}{K^{S}_{SS} + C};$$

$$/V_{c}; \qquad R^{S}_{tot}(0) = R^{S}_{0} = k^{S}_{syn} / k^{S}_{deg}; \qquad V^{M}_{max} = R^{M}_{0}k^{M}_{int}.$$


$$_{t} - R^{S}_{tot} - K^{S}_{SS}) + \sqrt{(C_{tot} - R^{S}_{tot} - K^{S}_{SS})^{2} + 4K^{S}_{SS}C_{tot}}$$

- Drug-M-target complex elimination is fast; total M-target concentration is constant; therefore, MM approximation is valid;
- Drug-S-target complex elimination is slow, accumulation is significant; therefore, QSS approximation should be used.

Limitations

modified to account for kinetics of all drug-multiple targets complexes.

Single-Subject Simulations

Assumptions

Equations describe the drug that binds to only one target at a time. To describe drugs that bind to several targets simultaneously, the TMDD system needs to be

Population PK-PD simulations

- Typical Phase 1 Phase 2 dataset was simulated using TMDD model:
- ✓ 224 subjects following single or multiple-dose administration of 100 to 1000 nmol IV and SC doses;
- ✓ Rich data: 3250 free (unbound) or total (unbound and bound to Starget) drug concentrations and 3305 total (unbound and bound to the drug) S-target concentrations;
- ✓ Quantification limit of 0.1 or 0 nmol/L for drug and target data;
- ✓ Moderate (20% CV) inter-subject variability;
- ✓ Moderate (15-20% CV for drug and target data, respectively) residual variability;
- Four models were fitted to the data:
 - ✓ M1: one-target QSS model *ignored PK contribution of M-target*;
 - ✓ M2: empirical combination of Michaelis-Menten (PK) and QSS (Starget) models - ignored PK contribution of S-target;
 - ✓ M3: two-target QSS model;
- ✓ M4: full two-target TMDD model *true model*;
- Two-sets of initial estimates: true (test 1) or randomly perturbed by 50-200% but within a reasonable range of parameters (test 2).
- Simulation and estimation were conduced using Nonmem 7[®] software;
- FOCEI was used for all estimation runs.

Table 2 Summary of simulation cooperios

Table 2 Summary of simulation scenarios					
Set	Models	Available data	BQL treatment	Parameter values	
1	M1, M2, M3, M4	Free drug concentration; total S-	BQL values excluded	As in Table 1, i.e.	
2	M1, M2, M3	target concentration	All values included	$k_{syn}^{S} = 1.0, k_{syn}^{M} = 1.5$	
3	M1, M2, M3	(Free drug+drug-S- target complex)	BQL values excluded	As in Table 1, i.e.	
4		concentration; total S- target concentration	All values included	$k_{syn}^{S} = 1.0, k_{syn}^{M} = 1.5$	
5	M1, M2, M3	Free drug concentration; total S-	BQL values	As in Table 1 but k_{syn}^{s} -0.5, k_{syn}^{M} -2.5	
6	1011, 1012, 1013	target concentration	excluded	As in Table 1 but $k_{syn}^{s}=2.5, k_{syn}^{M}=0.5$	

				K syn	-2.5, K _{syn} -0.5
Table 3 Pa	rameter Estim	ates (%RSE)[%	%Bias] of the P	opulation Mod	els M1-M4
Parameter	M1	M2	M3	M4 Test 1	M4 Test 2
CL	0.384 (2) [28]	0.286 (3) [5]	0.310 (2) [3]	0.299 (2) [0]	0.297 (2) [1]
V _c	3.07 (2) [2]	3.06 (2) [2]	2.95 (2) [2]	2.97 (2) [1]	2.98 (2) [1]
Q	0.127 (3) [37]	0.185 (2) [8]	0.200 (3) [0]	0.198 (2) [1]	0.196 (2) [2]
V _p	2.05 (3) [48]	3.13 (2) [4]	2.97 (3) [1]	2.97 (2) [1]	2.96 (2) [1]
F _{SC}	0.683 (2) [2]	0.679 (2) [2]	0.688 (2) [2]	0.683 (2) [2]	0.682 (2) [2]
k _a	0.559 (3) [12]	0.551 (3) [10]	0.52 3 (2) [5]	0.529 (3) [6]	0.532 (3) [6]
k ^S _{on}	-	-	-	8.36 (4) [16]	6.43 (11) [36]
k^{s}_{off}	-	_	_	0.0952 (4) [5]	0.0728 (11) [27]
k_{int}^{S}	0.0649 (2) [30]	0.0546 (3) [9]	0.0529 (2) [6]	0.0495 (2) [1]	0.0489 (2) [2]
k ^S _{syn}				1.01 (1) [1]	1.01 (2) [1]
k ^s _{deg}	11.7 (3) [17]	9.00 (3) [10]	9.80 (3) [2]	9.19 (3) [8]	9.11 (3) [9]
R^{S}_{0}	0.0952 (2) [5]	0.110 (2) [10]	0.101 (2) [1]	0.110 ^a [10]	0.111 ^a [11]
K ^S _{SS}	0.0081 (2) [46]	0.0106 (2) [31]	0.0107 (2) [29]	0.0173 ^a [12]	0.0189 ^a [13]
k ^M _{on}	-	_	_	4.85 (6) [3]	1.82 (17) [64]
k^{M}_{off}	-	-	-	0.201 (11) [20]	0.0411 (42) [84]
k^{M}_{int}	-	_	_	7.62 (17) [49]	4.64 (5) [69]
k ^M _{syn}	-	_	_	1.47 (4) [2]	1.50 (6) [0]
k ^M _{deg}	-	_	_	12.8 (5) [15]	4.97 (18) [66]
V ^M _{max}	-	2.71 (4) [81]	1.28 (8) [15]	0.88 ^a [41]	1.40 ^a [7]
K ^M _{SS}	-	4.32 (4) [42]	2.57 (10) [16]	1.61 ^a [47]	2.57 ^a [16]
Objective	16055	15781	15438	15197	15200
function					
a Domissed none	motors: ^b CI O: ala	propos and inter som	nortmont algorange	V V : control and	parinharal volumas

^a Derived parameters; ^bCL, Q: clearance and inter-compartment clearance; V_c, V_p: central and peripheral volumes. Rate constants are expressed as $k_{el}=CL/V_c$, $k_{pt}=Q/V_c$, $k_{tp}=Q/V_p$.

RESULTS

g	two-1	target	full
D			

	41
Single-subject simulations of the typical dosing regimens indicated	that.
Single budjeet billialations of the typical dobing regiments indicated	unc.

- ✓ In the typical range of parameters, the two-target TMDD and QSS models provide nearly identical description of the drug and target concentration data;
- ✓ Relative importance of two elimination routes (S- and M-targets) depends on the ratio k_{syn}^S/k_{syn}^M of their synthesis rates;

Population PK-PD simulations indicated that:

- ✓ Use of the full TMDD model was unfeasible (extremely long run times; instability of the model; dependence of the result on initial estimates; large bias in the binding parameter estimates);
- Two-target QSS model correctly estimated all model parameters and predicted decrease of unobserved M-target concentrations from baseline in all cases except when the M-target synthesis rate was significantly lower than the S-target synthesis. In this case, M-target parameter estimates were imprecise and biased;
- Two-target QSS model performed equally well when the total rather than free drug concentrations were available;
- Inclusion of concentrations below quantification limit (of 0.1 nmol/L) has not affected bias and precision of the parameter estimates;
- ✓ One-target QSS model that ignored contribution of the M-target performed well when the M-target contribution was indeed negligible but provided biased parameter estimates when this contribution was significant.

CONCLUSIONS

- The TMDD model and its approximations were derived for drugs that bind to more than one target;
- In the range of the parameters typical for the monoclonal antibody that binds soluble and membrane-bound forms of the target, QSS approximation of the TMDD model correctly describes drug and target concentrations;
- A simulation study demonstrated that QSS approximation of the twotarget TMDD model provided unbiased and robust estimates of all relevant TMDD parameters.

REFERENCES

- Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Journal of Pharmacokinetics Pharmacodynamics (2001), 28: 507-532.
- Gibiansky L, Gibiansky E, Kakkar T, Ma P: Approximations of the target-mediated drug disposition model and identifiability of model parameters., Journal of Pharmacokinetics Pharmacodynamics (2008), 35:573-91
- Gibiansky L, Gibiansky E, Target-Mediated Drug Disposition Model: Approximations, Identifiability of Model Parameters, and Applications to the Population Pharmacokinetic – Pharmacodynamic Modeling of Biologics, Expert Opinion On Drug Metabolism and Toxicology (2009), 5(7): 803-812.