Population Modeling of Tumor Growth in a Murine Xenograft Model Following Administration of Biologic Drug Candidate

Liang Zhao, Gabriel Robbie, Dowdy Jackson, John Gooya, Maria Camara, Ekaterina Gibiansky

MedImmune, Gaithersburg, MD, U.S.A.

BACKGROUND

- Antibody-drug conjugate (ADC), where an antibody binds specifically to a receptor overexpressed on tumor cells, and by internalization delivers a small molecule toxin inside the cell, represents a novel and promising therapeutic approach in oncology
- An ADC was tested in a murine model, where mice were injected subcutaneously with PC3 human prostate tumor cells. After initial period of tumor growth ADC was administered, and tumors were measured over time
- The attempt to describe the tumor growth using previously published approach [1] was not successful in describing
 - Tumor growth pattern for individual animals
 - Delayed time for tumor regression
- Quick tumor relapse following discontinuation of treatment
- A modified approach to address these complexities is presented

OBJECTIVES

To develop a semi-mechanistic dynamic model of tumor growth and ADC effects in an in vivo murine xenograft model and to propose doses/regimens that optimize therapeutic efficacy

METHODS

STUDY DESIGN

- Mice injected subcutaneously with PC3 human prostate tumor cells
- When tumors reached 200-300 m3 (Day 21), 7 groups of mice (10/group) were administered ADC
 - Dose levels: 0.1, 1, 3 mg/kg
 - Dosing frequencies: QWx5, Q4Dx5 for each dose level
 - Control group dosed with drug-free vehicle by QWx5
- Tumor volume monitored up to at least one week after discontinuation of treatment (Day 32-40)

MODELING

Published Tumor Growth Model

Proposed Tumor Growth Model

SIMULATIONS

To explore efficacy for different doses/regimens following simulations were performed:

- Doses
- 0.1, 0.5, 1, and 2 mg/kg/day
- Frequency of dosing
- · QD, QW, and QM
- · 20 individuals simulated for each regimen (Dose*Frequency) (12 regimens)

RESULTS

MODEL BUILDING

Model ID	Model Description		-Minimization	0		OFV	Post Noc Diagonostics for Correlation between	
	Tumor Growth Rate (mm3/day)	ADT Tumor Killing Rate (mm3/day)	Status	Step Status	OFV	Change	Tumor Growth Rate and Baseline Tumor Weight	Tumor Killing Rate and Dose level
201	Constant	K2*C(tumor)	8	N	6425	0	Yes	Yes
	Published model ¹	K2*C(tumor), K2*CE, etc.	N or S	N		>0	Yes	Yes
Z02	Constant	K2*CE	8	N	6402	-23	Yes	No
Z03	Constant	K2/W*CE	8	8	6316	-109	Yes	No
Z04	Constant*W	K2/W*CE	8	s	6379	-46	Yes	No
Z05	Constant*BW	K2/W*CE	8	8	6393	-32		No
Z06	Gmax*WI(GCso+W)	K2/W*CE					Yes	No
Z07 (final	Gmax*W/(GCso+W), with							
Model)	Gmax=Constant*BW12	K2W*CE	8	8	6280	-145	No	No

Tumor Weight; BW: Baseline tumor weight; S: Successful; N: not successful; < Not applicat

Parameter Estimates for Final Model

	Paramters	Interindividual Variability				
Label	Description	Unit	Estimate	Standard Error	Estimate (CV%)	Standard Error (%)
BW	Mean Tumor Baseline Volume	mm3	136	4.9%	0.17 (41.2%)	19%
К	Maximum Growth Rate Gmax=K*BW12		2.42	2.9%	0.0097 (9.87%)	61.30%
GC50	Tumor Volume corresponding to 1/2 Gmax	mm3	3.79	34.6%		
K2	Tumor Killing Rate=K2/W*CE(t)		0.47	22.8%	0.404 (63.6%)	33%
KEO	Transition rate for Effect compartment	1/day	0.243	30.9%		
K1	Tumor Death Rate	mm3/day	0.29	6.0%	- C	
METHO	=FOCE with INTERACTION					

Predicted and Observed Tumor Growth Profiles

The model adequately described both tumor progression and regression patterns with and without treatment

Representative Predicted and Observed Tumor Volumes

Dose: 3 mg/kg Shedule: Q4Dx5

The model described:

Delay of tumor regression after initiation of drug treatment

· Quick onset of tumor relapse after discontinuation of treatment

INTERNAL MODEL EVALUATION

- No deviation patterns in goodness-of-fit plots
 PRED/IPRED/WRES/CWRES vs. DV/TIME
 Predictive checks
- No dependence of parameters (ETAs) on
 dose or dosing schedule
 baseline tumor volume

EXTERNAL MODEL EVALUATION

Predicted and Observed Tumor Volume

/alidation Data: 6 mg/kg Q4Dx5, starting at day

The model can be extrapolated to predict the tumor respone from another experiment with

Higher ADC dose level

More aggressive tumors

SINULATIONS

- Target tumor drug concentration for tumor eradication ~20 mcg/mL
- Tumor re-growth starts at tumor drug concentration ~5-10 mcg/mL

12 mg/kg Q2W would eradicate tumors in all animals
 Higher drug doses greatly reduce variability of tumor response to treatment

SUMMARY OF MODEL FEATURES

Semi-mechanistic tumor growth model:

- Continuous decrease of growth rate for proliferating cancer cells
 Initial stage: exponential growth
 - · Late stage: linear growth
- Delay in tumor regression upon drug treatment modeled by an effect compartment
 - Effect compartment may represent the internalization process and the delayed cytotoxicity with cell-cycle specific agents
- The rate of conversion of proliferating tumor cells to damaged tumor cells
- Proportional to tumor effect-compartment concentration
 inversely proportional to tumor weight

CONCLUSIONS

- The enhanced semi-mechanistic tumor growth model was proposed with modifications based on biological understanding of tumor dynamics
- The population PK/PD model described the dynamics of tumor growth in placebo and ADC-treated animals, during treatment and after its discontinuation
- Simulations based on the model allowed to define target tumor ADC concentrations and to optimize dose regimens for further development

REFERENCES

[1] Simeoni, M et al. Clinical Cancer Research 2004; 64, 1094-1101.

American Conference on Pharmacometrics March 9-12, 2008 Tuscon, AZ